Imprimir Resumo


The 27th AIRAPT International Conference on High Pressure Science and Technology
Abstract

Oral


Pressure studies of the structural and superconducting transitions in La3Co4Sn13

Authors:
Leticie Mendonça-ferreira (CCNH/UFABC - Centro de Ciências Naturais e Humanas, Universidade Federal do ABC) ; Fellipe B. Carneiro (CBPF - Centro Brasileiro de Pesquisas Físicas) ; Magda B. Fontes (CBPF - Centro Brasileiro de Pesquisas Físicas) ; Elisa Baggio-saitovitch (CBPF - Centro Brasileiro de Pesquisas Físicas) ; Larissa S. I. Veiga (DESY - Deutsches Elektronen Synchrotron) ; José Renato L. Mardegan (DESY - Deutsches Elektronen Synchrotron, PSI - Swiss Light Source, Paul Scherrer Institut) ; Joerg Strempfer (DESY - Deutsches Elektronen Synchrotron) ; Mário M. Piva (IFGW/UNICAMP - Instituto de Física “Gleb Wataghin”, UNICAMP) ; Pascoal G. Pagliuso (IFGW/UNICAMP - Instituto de Física “Gleb Wataghin”, UNICAMP) ; Ricardo D. dos Reis (LNLS/CNPEM - Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais) ; Eduardo M. Bittar (CBPF - Centro Brasileiro de Pesquisas Físicas)

Abstract:

Application of high pressures may create new materials that are not synthesized under ordinary pressure conditions, induce changes in the lattice, electronic and magnetic properties and give rise to new phenomena. In particular, it allows tuning in a clean way the main interactions behind complex phenomena in strongly correlated electron systems. In the present work, we report results of high pressure electrical resistivity and x-rays diffraction measurements carried out on superconducting La3Co4Sn13 [1]. This material belongs to the family of caged stannide compounds R3M4Sn13 (R = rare earth or alkaline-earth, M = transition metal) which has recently regained interest due to the possible interplay between superconductivity and the occurrence of a structural quantum critical point, as claimed in Ca3Ir4Sn13 (Tc ∼ 7 K) and in Sr3Ir4Sn13 (Tc ∼ 5 K) [2]. La3Co4Sn13 is a superconductor with transition temperature Tc = 2.70 K, which presents a superlattice structural transition at T* = 150 K, a common feature for this class of compounds. However, in the case of La3Co4Sn13, it is not clear if the lattice distortions at T* arises from a charge density wave (CDW) or from a distinct microscopic origin. Our study shows that application of pressure on single-crystalline La3Co4Sn13 displaces the superconducting transition to higher temperatures while it decreases T*, resembling the observed behavior for Sr3-xCax(Rh,Ir)4Sn13 similar compounds. In addition, we observe a thermal hysteresis loops for cooling/heating cycles around T* for P ³ 0.6 GPa in electrical resistivity measurements, which are not seen in x-ray diffraction data. The hysteresis in electrical measurements may be due to the pinning of a partially gapped CDW phase to impurities/defects, while the superlattice structural transition maintains its ambient pressure second-order transition nature under pressure. From our experiments we estimate that T* vanishes at around 5.5 GPa, though no quantum critical behavior is observed up to 2.53 GPa. This work was supported by the Brazilian funding agencies Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) [No. E-26/010.001045/2015], Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [No.400633/2016-7], and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Nos. 2011/19924-2 and 2012/04870-7].

[1] L. Mendonça-Ferreira et al. Journal of Alloys and Compounds 773 (2019) 34-39.

[2] L. E. Klintberg et al., Phys. Rev. Lett. 109 (2012) 237008.