Imprimir Resumo


The 27th AIRAPT International Conference on High Pressure Science and Technology
Abstract

Oral


High-Pressure Synthesis of a Novel Tin Oxynitride Sn2N2O (SNO)

Authors:
Shrikant Bhat (DESY - Deutsches Elektronen-Synchrotron ) ; Leonore Wiehl (TUD - FB Material- und Geowissenschaften, Technische Universität Darmstadt) ; Shariq Haseen (UTA - Department of Chemistry and Biochemistry, The University of Texas at Arlington) ; Peter Kroll (UTA - Department of Chemistry and Biochemistry, The University of Texas at Arlington) ; Kostantin Glazyrin (DESY - Deutsches Elektronen-Synchrotron ) ; Philipp Gollé (TUD - FB Material- und Geowissenschaften, Technische Universität Darmstadt) ; Ute Kolb (JGU - Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, TUD - FB Material- und Geowissenschaften, Technische Universität Darmstadt) ; Robert Farla (DESY - Deutsches Elektronen-Synchrotron ) ; Jo-chi Tseng (DESY - Deutsches Elektronen-Synchrotron ) ; Emanuel Ionescu (TUD - FB Material- und Geowissenschaften, Technische Universität Darmstadt) ; Tomoo Katsura (BGI - Bayerisches Geoinstitut, University of Bayreuth) ; Ralf Riedel (TUD - FB Material- und Geowissenschaften, Technische Universität Darmstadt)

Abstract:

The group 14 elements form well-known nitrides and oxynitrides. Spinel type nitrides, namely Si3N4, Ge3N4 and Sn3N4, offer a new class of compounds with potentially useful mechanical and optoelectronic properties. Silicon oxynitride (Si2N2O) ‘Sinoite’ and the isostructural germanium oxynitride (Ge2N2O) are known for decades. Sinoite, first discovered in a meteorite in 1962, is a noted refractory ceramic. An oxynitride of the group 14 element ‘Sn’, however, is still unknown.

          Here, we report on the high-pressure high-temperature (HP-HT) synthesis of the first tin oxynitride Sn2N2O (SNO). SNO was synthesized at p = 20 GPa and T = 1200 -1500 °C using a large volume press (LVP) installed at the beamline P61B at DESY, Hamburg. SNO is found to exhibit a novel Rh2S3-type crystal structure where all Sn atoms are in sixfold coordination, in contrast to the fourfold coordination of Sinoite. Materials are characterized by elemental analysis, angle-dispersive powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) in combination with automated diffraction tomography (ADT). An isothermal bulk modulus of Ko = 193(5) GPa was determined by in-situ synchrotron X-ray diffraction in a diamond anvil cell. Along with the reaction enthalpy as function of pressure (Figure 1), the bulk modulus and the band structure, the structure model is also supported by DFT calculations.

Figure 1. Reaction enthalpy (PBE results) of the reaction SnO2 + Sn3N4 -> 2 Sn2N2O as a function of pressure. The labels indicate (1) transformation spinel-type Sn2N2O to Pbcn- Sn2N2O (at 4.6 GPa), (2) ∆H = 0 (12.0 GPa), (3) transformation rutile-type SnO2 to α-PbO2-type SnO2 (12.5 GPa), and (4) transformation α-PbO2-type SnO2 to pyrite-type SnO2 (17.2 GPa).