Imprimir Resumo


The 27th AIRAPT International Conference on High Pressure Science and Technology
Abstract

Oral


Electronic topology of incipient metals under pressure: The case of natural van der Waals heterostructures

Authors:
Juan Angel Sans (UPV - Universitat Politècnica de València) ; Rosario Vilaplana (UPV - Universitat Politècnica de València) ; Estelina L. da Silva (UPV - Universitat Politècnica de València) ; Catalin Popescu (ALBA - ALBA-CELLS) ; Vanesa Paula Cuenca-gotor (UPV - Universitat Politècnica de València) ; Adrián Andrada-chacón (UCAM - Universidad Complutense de Madrid) ; Javier Sánchez-benitez (UCAM - Universidad Complutense de Madrid) ; Oscar Gomis (UPV - Universitat Politècnica de València) ; André L. J. Pereira (UFGD - Universidade Federal da Grande Dourados, UPV - Universitat Politècnica de València) ; Plácida Rodríguez-hernández (ULL - Universidad de La Laguna) ; Alfonso Muñoz (ULL - Universidad de La Laguna) ; Dominik Daisenberger (DIAMOND - diamond light source) ; Braulio García-domene (UV - Universitat de València,) ; Alfredo Segura (UV - Universitat de València,) ; Daniel Errandonea (UV - Universitat de València,) ; Rahvi S. Kumar (UNLV - University of Nevada Las Vegas) ; Oliver Oeckler (IMKM - Institut für Mineralogie, Kristallographie und Materialwissenschaft) ; Julia Contreras-garcía (CNRS - Centre national de la recherche scientifique) ; Francisco Javier Manjón (UPV - Universitat Politècnica de València)

Abstract:

The observation of topological insulating (TI) properties in A2X3 binary compounds with layered tetradymite structure [1,2] has triggered the exploration of ternary BA2X4 compounds based on these binary compounds [3]. In fact, recent electronic structure calculations have predicted many of them to be 3D-TIs, like rhombohedral SnSb2Te4 [4]. Moreover, the recent discovery of a new kind of chemical interaction, so-called metavalent bonding [5], which occurs in A2X3 binary compounds with layered tetradymite structure, has enhanced the investigation on ternary compounds composed by them.

Here, we present a joint experimental and theoretical study of the structural, vibrational and electrical properties of rhombohedral SnBi2Te4 [6] and SnSb2Te4 [7] at high pressure, which unveils the internal mechanisms developed during their compression. These properties are compared with their parent binary compounds (Bi2Te3 and SnTe in SnBi2Te4 and Sb2Te3 and SnTe in SnSb2Te4) and with related natural van der Waals materials.

In SnSb2Te4, the structural study reveals an isostructural phase transition occurring at 2.5 GPa, while a pressure-induced decomposition into their parent binary compounds is observed in both compounds above 7 GPa. These results are coherent with the high pressure electrical behavior and is supported by the analysis of their formation enthalpies. Furthermore, the analysis of the frequency of the Raman-active modes and the evolution under pressure of the ternary compounds reveal a strong correlation with the vibrational modes of its parent binary materials, leading to the detection of a Raman-inactive LO-mode of c‑SnTe. Thus, Raman spectroscopy of ternary compounds can be used as a useful tool to unveil Raman-inactive modes of their binary constituents.

Finally, we performed an electronic topology analysis to unveil the interactions given in both van der Waals heterostructures. The analysis of the electron localization function (ELF) reveal that in a single material (SnSb2Te4) we are able to distinguish three type of interactions: i) a van der Waals interaction between Teexternal-Teexternal atoms, which becomes progressively more ionic with compression; ii) a polar covalent bond between Sb-Teexternal atoms, which remains unalterable under compression; and iii) a metavalent bonding between Sb-Teinternal and Sn-Teinternal atoms. The evaluation of the electronic densities and its Laplacians at the bond critical point of the last two bonds provides a new criterion to identify metavalent interactions when the material is very complex with coexistence of different kind of bonds.

References:

  1. H. Zhang, C. X. Liu, X. L. Qi, X. Dai et al. Nature Physics 2009, 5, 438.
  2. F. J. Manjón, R. Vilaplana, O. Gomis, E. Pérez-González et al. Phys. Stat. Sol. (b) 250, 669 (2013)
  3. S. V. Eremev, T. V. Menschikova, I. V. Silkin, M. G. Vegniory et al. Physical Review B 2015, 91, 245145.
  4. D. Niesner, S. Otto, V. Hermann, Th. Fauster et al. Physical Review B 2014, 89, 081404.
  5. M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara et al. Advanced Materials 30, 1803777 (2018)
  6. R. Vilaplana, J. A. Sans, F. J. Manjón, A. Andrada-Chacón, et al. Journal of Alloys and Compounds 685, 962 (2016)
  7. J. A. Sans, R. Vilaplana, E. L. Da Silva, C. Popescu et al. Under revision.