Imprimir Resumo


The 27th AIRAPT International Conference on High Pressure Science and Technology
Abstract

Poster


16:30

Polyamorfism in h-MoO3 under high-pressure: High-Pressure XRD and Raman Studies

Authors:
José Valdenir Silveira (UFC - Campus Sobral - Universidade Federal do Ceará) ; João Victor Barbosa Moura (UFC - Departamento de Física, Universidade Federal do Ceará) ; Francisco Ferreira Sousa (UFPA - Instituto de Ciências Exatas e Naturais - Universidade Federal do Pará) ; Cleanio Luz Lima (UFPI - Departamento de Física, Universidade Federal do Piauí) ; Adenilson Oliveira Santos (UFMA - Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão) ; Paulo de Tarso Cavalcante Freire (UFC - Departamento de Física, Universidade Federal do Ceará) ; Antônio Gomes Souza Filho (UFC - Departamento de Física, Universidade Federal do Ceará)

Abstract:

Pressure-induced transformations of hexagonal molybdenum oxide (h-MoO3) nanorods prepared by a hydrothermal method were investigated in situ using synchrotron X-ray diffraction and Raman scattering in a diamond anvil cell up to 62 GPa under ambient temperature. We observed that h-MoO3 nanorods present a pressure-induced amorphization (PIA) process upon compression to 16 GPa, a critical pressure higher than for h-MoO3 microcrystal. Our data provide evidence that a new amorphous-amorphous phase transition occurs at about 34 GPa, resulting in a high-density amorphous (HDA) form. Upon decompression, the HDA form was maintained at ambient conditions. SEM images of the samples submitted to different hydrostatic pressures revel that their pristine nanorods shape is loss by in situ fracture process, between 16-30 GPa of applied pressure. The bulk modulus of the nanostructured h-MoO3 phase was determined by fitting of the volume by a third-order Birch–Murnaghan equation of state, which yields a bulk modulus value of B0 = 49.8 ± 2.0 GPa, with B0’ = 5. This study is the first to demonstrate that h-MoO3 present both amorphization and polyamorphism under high-pressure conditions.